3y^2+y=94

Simple and best practice solution for 3y^2+y=94 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+y=94 equation:


Simplifying
3y2 + y = 94

Reorder the terms:
y + 3y2 = 94

Solving
y + 3y2 = 94

Solving for variable 'y'.

Reorder the terms:
-94 + y + 3y2 = 94 + -94

Combine like terms: 94 + -94 = 0
-94 + y + 3y2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-31.33333333 + 0.3333333333y + y2 = 0

Move the constant term to the right:

Add '31.33333333' to each side of the equation.
-31.33333333 + 0.3333333333y + 31.33333333 + y2 = 0 + 31.33333333

Reorder the terms:
-31.33333333 + 31.33333333 + 0.3333333333y + y2 = 0 + 31.33333333

Combine like terms: -31.33333333 + 31.33333333 = 0.00000000
0.00000000 + 0.3333333333y + y2 = 0 + 31.33333333
0.3333333333y + y2 = 0 + 31.33333333

Combine like terms: 0 + 31.33333333 = 31.33333333
0.3333333333y + y2 = 31.33333333

The y term is y.  Take half its coefficient (0.5).
Square it (0.25) and add it to both sides.

Add '0.25' to each side of the equation.
0.3333333333y + 0.25 + y2 = 31.33333333 + 0.25

Reorder the terms:
0.25 + 0.3333333333y + y2 = 31.33333333 + 0.25

Combine like terms: 31.33333333 + 0.25 = 31.58333333
0.25 + 0.3333333333y + y2 = 31.58333333

Factor a perfect square on the left side:
(y + 0.5)(y + 0.5) = 31.58333333

Calculate the square root of the right side: 5.6199051

Break this problem into two subproblems by setting 
(y + 0.5) equal to 5.6199051 and -5.6199051.

Subproblem 1

y + 0.5 = 5.6199051 Simplifying y + 0.5 = 5.6199051 Reorder the terms: 0.5 + y = 5.6199051 Solving 0.5 + y = 5.6199051 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + y = 5.6199051 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + y = 5.6199051 + -0.5 y = 5.6199051 + -0.5 Combine like terms: 5.6199051 + -0.5 = 5.1199051 y = 5.1199051 Simplifying y = 5.1199051

Subproblem 2

y + 0.5 = -5.6199051 Simplifying y + 0.5 = -5.6199051 Reorder the terms: 0.5 + y = -5.6199051 Solving 0.5 + y = -5.6199051 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + y = -5.6199051 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + y = -5.6199051 + -0.5 y = -5.6199051 + -0.5 Combine like terms: -5.6199051 + -0.5 = -6.1199051 y = -6.1199051 Simplifying y = -6.1199051

Solution

The solution to the problem is based on the solutions from the subproblems. y = {5.1199051, -6.1199051}

See similar equations:

| 3x+5+x=15 | | 2-9z=7z-1-2 | | 5*2+10m=92 | | 0.3x+2.8x=12.4-1.9+2.8x | | 2/3x^6-5x^(-2) | | -2a+12+9a=7a-4a | | 1/2(4x-10x)=x+5 | | (4x-10)/(5-2x) | | 5(12c-125)=3500 | | (2/5)y-8=9-(3/4)y | | 3x-18/10 | | 3x-18/10 | | 3x-18/10 | | x/9+5=-3 | | 12c-125=3500 | | 4*4=l | | -7(v+2)+4v+7=5v+12 | | 7x+4=x+16x | | 10x+5-6x=4(x-1)+9 | | x/x3-1 | | a:9=-4 | | 1/2x+3=4x+9/4 | | m=4p-26 | | 6b^2-19b+15= | | 3x(5+3x)-4x=x | | 9x^2+163x+700=0 | | 7x^2=-12x-5 | | 24+6x/8 | | 3y-12=6x | | 2x^2-29x+7=0 | | 3x+8=-x+17 | | 1.15p=69 |

Equations solver categories